Researchers in Japan are showing way to decode thoughts


 

“The team has created a first-of-its-kind algorithm that can interpret and accurately reproduce images seen or imagined by a person,” wrote Alexandru Micu in ZME Science.

Their paper, “Deep image reconstruction from human brain activity,” is on bioRxiv. The authors are Guohua Shen, Tomoyasu Horikawa, Kei Majima, and Yukiyasu Kamitani.

Vanessa Ramirez, associate editor of Singularity Hub, was one of several writers on tech watching sites who reported on the study. The writers noted that this would mark a difference from other research involved in deconstructing images based on pixels and basic shapes.

“Trying to tame a computer to decode mental images isn’t a new idea,” said Micu. “However, all previous systems have been limited in scope and ability. Some can only handle narrow domains like facial shape, while others can only rebuild images from preprogrammed images or categories.”

What is special here, Micu said, is that “their new algorithm can generate new, recognizable images from scratch.”

The study team has been exploring deep image reconstruction. Micu quoted the senior author of the study. “We believe that a deep neural network is good proxy for the brain’s hierarchical processing,” said Yukiyasu Kamitani.

Overview of deep image reconstruction is shown. The pixels’ values of the input image are optimized so that the DNN features of the image are similar to those decoded from fMRI activity. A deep generator network (DGN) is optionally combined with the DNN to produce natural-looking images, in which optimization is performed at the input space of the DGN. Credit: bioRxiv (2017). DOI: 10.1101/240317

Abstract

Machine learning-based analysis of human functional magnetic resonance imaging (fMRI) patterns has enabled the visualization of perceptual content. However, it has been limited to the reconstruction with low-level image bases (Miyawaki et al., 2008; Wen et al., 2016) or to the matching to exemplars (Naselaris et al., 2009; Nishimoto et al., 2011). Recent work showed that visual cortical activity can be decoded (translated) into hierarchical features of a deep neural network (DNN) for the same input image, providing a way to make use of the information from hierarchical visual features (Horikawa & Kamitani, 2017). Here, we present a novel image reconstruction method, in which the pixel values of an image are optimized to make its DNN features similar to those decoded from human brain activity at multiple layers. We found that the generated images resembled the stimulus images (both natural images and artificial shapes) and the subjective visual content during imagery. While our model was solely trained with natural images, our method successfully generalized the reconstruction to artificial shapes, indicating that our model indeed reconstructs or generates images from brain activity, not simply matches to exemplars. A natural image prior introduced by another deep neural network effectively rendered semantically meaningful details to reconstructions by constraining reconstructed images to be similar to natural images. Furthermore, human judgment of reconstructions suggests the effectiveness of combining multiple DNN layers to enhance visual quality of generated images. The results suggest that hierarchical visual information in the brain can be effectively combined to reconstruct perceptual and subjective images.

Episteme Spacecraft Project & Molecular Historicism

 

Click here for a presentation!
Türkçe sunum için tıklayınız!

Episteme Spacecraft Project & Molecular Historicism
In 2010 I wrote a satire piece about the determinisms of religion and science entitled “How to make a spacecraft” where I proposed the fundamentals of the Episteme Spacecraft Project and the three tests. 
The idea is that we could take the life specific data of a living organism and correlate it with its DNA and form a database with as many species as possible and in turn when looking at a new organism (even an alien organism) we could program that database to produce a DNA from other life specific data. The connection point of data from data is symbiosis and the aim is to employ the DNA as a symbiosis based operating system that has ability to convert different types of life specific data to each other.
In this e-book you will also find my philosophical reasoning that I call Molecular Historicism as a basis for and as a result of the Episteme Spacecraft project. Molecular Historicism refers to DNA as the primary element because DNA refers to molecule as future action, as life. I think that every living thing has an individual reality of time and life could be considered the potential of every atom. As such we could talk about a unified field & time of life in the universe pulsing to a universal symbiosis.

Table of Contents

Episteme Spacecraft Project
1) What am I doing here, the undertaking;
Visions of the Future from Biological Sciences
2) An Introductive Summary
Correspondence with the Editor of Journal of Cosmology
3) The First Test; The Biological Pi
Research Related to Approach and Logic of Relation
DNA to Image
An Example of Correlation of Image to Sound
The use of DNA for Purposes other than interaction within the cell
DNA imaged with electron microscope for the first time
4) The Second Test; DNA of Earth
The Approximation
Life Possible Frequency Isolation; DNA of Earth
Research Related to Approach and Logic of Relation
NASA Earth Science Data
Using satellite images to detect cellular organisms
Using satellite images to detect bark beetle outbreaks in forests
Spectral band discrimination for species observed from hyperspectral remote sensing
Example of Reverse Engineering Project Working With Biological Data
5) The Third Test; Standard Deviation for Planets
Standard Deviation for a Specific Planet or Moon
The Biological Pi; Perfecting the DNA of Earth
Symbiosis; The Premise of the Episteme Spacecraft Thesis
6) Blueprint for a Consortium
7) Forum Entries
Molecular Historicism
The Foundations of the Idea of Molecular Historicism
What is life?
What is nature?
What is the body and particularly the human body?
The Critical Applications of the Idea of Molecular Historicism
Prof. Stephen Hawking and the question of the brain as a machine
Thinking together with life; Justice for the Scope of Life
The Question of Entropy; what is Entropy to Life?
The boundaries of the body and the reaches of the atomic body
Genetically Modified Organisms (GMO’s)
Naturality of Nature
The Nature Shaped by Humans
The Particle Collusion Experiments at LHC at CERN
Naturality of Nature
The Nature Shaped by Humans
A new fate; so where is free will?
The Biological Efficiency & Value of Evolution & Reasons for Biomimicry
A Hum in a Roaring World

We do not begin nor end at the borders of our skin…

The brain has a weak electrical force around it that transmits information;

“Researchers in the US have recorded neural spikes travelling too slowly in the brain to be explained by conventional signalling mechanisms. In the absence of other plausible explanations, the scientists believe these brain waves are being transmitted by a weak electrical field, and they’ve been able to detect one of these in mice.

“Researchers have thought that the brain’s endogenous electrical fields are too weak to propagate wave transmission,” said Dominique Durand, a biomedical engineer at Case Western Reserve University. “But it appears the brain may be using the fields to communicate without synaptic transmissions, gap junctions or diffusion.”

Running computer simulations to model their hypothesis, the researchers found that electrical fields can mediate propagation across layers of neurons. While the field is of low amplitude (approximately 2–6 mV/mm), it’s able to excite and activate immediate neighbours, which subsequently activate more neurons, travelling across the brain at about 10 centimetres per second.

http://www.jneurosci.org/content/35/48/15800

Welcome to my world 😉 Science can not even pin point "thinking" to the brain. I wrote this article in 2012;http://cosmosclan.blogspot.com.tr/2012/08/life-span-and-entropy.html

Posted by How to make a spacecraft / Uzay gemisi nasıl yapılır on Friday, January 15, 2016

Welcome to my world  Science can not even pin point “thinking” to the brain. I wrote this article in 2012;

https://cosmosclan.blogspot.com.tr/2012/08/life-span-and-entropy.html

(It is also available among my writings here; http://www.alphan.net/writings/ )

The collision model – Young proto-Earth, Theia & the Moon

7729_luna-tierra-theia-800x532

 

Editor’s summary

The Moon is thought to have formed mainly from material within a giant impactor that struck the proto-Earth, so it seems odd that the compositions of the Moon and Earth are so similar, given the differing composition of other Solar System bodies. Alessandra Mastrobuono-Battisti et al. track the feeding zones of growing planets in a suite of computational simulations of planetary accretion and find that different planets formed in the same simulation have distinct compositions, but the compositions of giant impactors are more similar to the planets they impact. A significant fraction of planet–impactor pairs have virtually identical compositions. The authors conclude that the similarity in composition between the Earth and Moon could be a natural consequence of a late giant impact.

Paper:

A primordial origin for the compositional similarity between the Earth and the Moon

Alessandra Mastrobuono-Battisti, Hagai B. Perets & Sean N. Raymond
AffiliationsContributionsCorresponding authors
Nature 520, 212–215 (09 April 2015) doi:10.1038/nature14333
Received 10 November 2014 Accepted 10 February 2015

http://www.nature.com/nature/journal/v520/n7546/abs/nature14333.html

Most of the properties of the Earth–Moon system can be explained
by a collision between a planetary embryo (giant impactor) and the
growing Earth late in the accretion process1–3. Simulations show that
most of the material that eventually aggregates to form the Moon
originates from theimpactor1,4,5. However, analysis of the terrestrial
and lunar isotopic compositions show them to be highly similar6–11.
In contrast, the compositions of other Solar System bodies are significantly
different from those of the Earth and Moon 12–14, suggesting
that different Solar System bodies have distinct compositions. This
challenges the giant impact scenario, because the Moon-forming
impactor must then also be thought to have a composition different
from that of the proto-Earth. Here we track the feeding zones of
growing planets in a suite of simulations of planetary accretion 15, to
measure the composition of Moon-forming impactors.We find that
different planets formed in the same simulation have distinct compositions,
but the compositions of giant impactors are statistically
more similar to the planets they impact. A large fraction of planet–
impactor pairs have almost identical compositions. Thus, the similarityin
composition between the Earth and Moon could be a natural
consequence of a late giant impact.

News:
Hit Me With Your Best Shot

Gravitational Lensing (Cosmic magnifying glass)

Ekran Alıntısı

News:

http://www.iflscience.com/space/gravitational-lens-allows-us-witness-supernova-repeat

Four versions of the same supernova explosion have been captured because a large galaxy between us and the event is distorting the path on which the light travels to reach us. The event not only makes visible a supernovae more distant than we normally see but provides the opportunity astronomers have been dreaming of to test three of the biggest questions in cosmology. Even more opportunities should arise in future.

One of the key predictions of General Relativity is that mass bends spacetime, and therefore light. Einstein predicted that very massive objects could focus light in a manner analogous with glass lenses, an effect finally observed in 1979.

Depending on the locations of the relevant objects we often see multiple images of the same distant quasar or galaxy. Since this light follows different paths to reach us the distance traveled on each will not be identical, so we are seeing some slightly delayed relative to the others. This makes little difference for an object whose brightness barely varies.

However, in 1964 Sjur Refsdal pointed out that different images of the same supernova would capture different moments in the explosion’s evolution, and might be used to test the rate at which the universe is expanding. Great efforts have been made to find such an example of such a valuable case. Dr Patrick Kelly of the University of California, Berkeley was looking for distant galaxies and came across the sight of four images of a nine billion year old supernova around a galaxy in the MACS J1149.6+2223 cluster.

Astronomers have glimpsed a far off and ancient star exploding, not once, but four times.

The exploding star, or supernova, was directly behind a cluster of huge galaxies, whose mass is so great that they warp space-time. This forms a cosmic magnifying glass that creates multiple images of the supernova, an effect first predicted by Albert Einstein’s General Theory of Relativity 100 years ago.

Dr Brad Tucker from The Australian National University (ANU) says it’s a dream discovery for the team.

“It’s perfectly set up, you couldn’t have designed a better experiment,” said Dr Tucker, from ANU Research School of Astronomy and Astrophysics.

“You can test some of the biggest questions about Einstein’s theory of relativity all at once – it kills three birds with one stone.”

Astronomers have mounted searches for such a cosmic arrangement over the past 20 years. However, this discovery was made during a separate search for distant galaxies by Dr Patrick Kelly from University of California, Berkeley.

“It really threw me for a loop when I spotted the four images surrounding the galaxy – it was a complete surprise,” he said.

The lucky discovery allows not only testing of the Theory of Relativity, but gives information about the strength of gravity, and the amount of dark matter and dark energy in the universe.

Because the gravitational effect of the intervening galaxy cluster magnifies the supernova that would normally be too distant to see, it provides a window into the deep past, Dr Tucker said.

“It’s a relic of a simpler time, when the universe was still slowing down and dark energy was not doing crazy stuff,” he said.

“We can use that to work out how dark matter and dark energy have messed up the universe.”

Paper:

http://science.sciencemag.org/content/347/6226/1123

Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens
BY PATRICK L. KELLY, STEVEN A. RODNEY, TOMMASO TREU, RYAN J. FOLEY, GABRIEL BRAMMER, KASPER B. SCHMIDT, ADI ZITRIN, ALESSANDRO SONNENFELD, LOUIS-GREGORY STROLGER, OR GRAUR, ALEXEI V. FILIPPENKO, SAURABH W. JHA, ADAM G. RIESS, MARUSA BRADAC, BENJAMIN J. WEINER, DANIEL SCOLNIC, MATTHEW A. MALKAN, ANJA VON DER LINDEN, MICHELE TRENTI, JENS HJORTH, RAPHAEL GAVAZZI, ADRIANO FONTANA, JULIAN C. MERTEN, CURTIS MCCULLY, TUCKER JONES, MARC POSTMAN, ALAN DRESSLER, BRANDON PATEL, S. BRADLEY CENKO, MELISSA L. GRAHAM, BRADLEY E. TUCKER
SCIENCE06 MAR 2015 : 1123-1126
Light from a distant supernova at z = 1.491 is detected in four images after being deflected en route by gravitational forces.

Abstract

In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster’s gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses.

Cryogenic clocks will stay accurate for 16 BILLION years

cryo-clocks_1024

Paper:

http://www.nature.com/nphoton/journal/v9/n3/full/nphoton.2015.5.html

Cryogenic optical lattice clocks

Ichiro Ushijima, Masao Takamoto, Manoj Das, Takuya Ohkubo & Hidetoshi Katori

Nature Photonics 9, 185–189 (2015) doi:10.1038/nphoton.2015.5
Received 13 May 2014 Accepted 06 January 2015 Published online 09 February 2015

The accuracy of atomic clocks relies on the superb reproducibility of atomic spectroscopy, which is accomplished by careful control and the elimination of environmental perturbations on atoms. To date, individual atomic clocks have achieved a 10−18 level of total uncertainties1, 2, but a two-clock comparison at the 10−18 level has yet to be demonstrated. Here, we demonstrate optical lattice clocks with 87Sr atoms interrogated in a cryogenic environment to address the blackbody radiation-induced frequency shift3, which remains the primary source of systematic uncertainty2, 4, 5, 6 and has initiated vigorous theoretical7, 8 and experimental9, 10 investigations. The systematic uncertainty for the cryogenic clock is evaluated to be 7.2 × 10−18, which is expedited by operating two such cryo-clocks synchronously11, 12. After 11 measurements performed over a month, statistical agreement between the two cryo-clocks reached 2.0 × 10−18. Such clocks’ reproducibility is a major step towards developing accurate clocks at the low 10−18 level, and is directly applicable as a means for relativistic geodesy13.

News:

New ‘Cryogenic’ Clock Developed In Japan Accurate For 16 Billion Years

These new cryogenic clocks will stay accurate for 16 BILLION years